

Improving Performance of BFS Algorithm with

GPU Computing using CUDA

Freya Amaranta Sutedja

Jakarta Intercultural School

Jakarta, Indonesia

freyamaranta@gmail.com

Olivia Tansi

Jakarta Nanyang School

Kabupaten Tangerang, Indonesia

oliviatansi79@gmail.com

 Michael Nathan Pamurahardjo

SpringField School

Jakarta, Indonesia

michaelnathanpam@gmail.com

Claudia Angelica

St. Joseph's Institution International

Singapore, Singapore

angelsmail157@gmail.com

Abstract—This paper aimed to implement both sequential

and parallel implementations using CUDA on Breadth First

Search (BFS) to see the differences and effects of it, followed by

an analysis of the result. We used the algorithm as that will be

elaborated more on the paper, here we would like to generally

compare its memory consumption and run time. It is found out

that parallel implementation runs faster on an average of 31.23

times compared to sequential implementation running the same

task. This is possible due to complete mapping on each column

operations into thread memory on GPU, as it gives constant time

complexity to each queue operation on its Traversal. Optimum

threads to be used in parallel programming is also needed to be

found, here we try to find it with trial-and-error testing. Further

research would involve more complex parallel programming

implementation and a more controlled testing environment.

Keywords—Breadth First Search, Sequential, Parallel

Computing, CUDA, NVIDIA

I. INTRODUCTION

Parallel processing is the division of process into different
parts, which performed concurrently by different processors
in a computer [1]. Parallel programming is a concept of using
two or more processors to complete a task. Parallel
programming comes with various benefits from solving larger
problems, doing things faster in a more reasonable time, and
more cases can be finished [2]. Set side by side with CPU,
GPU is taking into consideration to work with parallel
computations as it suits more. GPU nowadays have
considerably developed from recent years not just for gaming
as its early purpose, with the extend of General-purpose
computations on GPUs (GPGPU), as one of them is NVIDIA
CUDA [3].

In memory hierarchy, on parallel program execution the
threads will access data from some memory spaces. Each
thread will have both access to local and global memory. This
will make memory consumption on parallel computing
consumes more rather than serial, because there are a lot of
bandwidth usage that happens upon memory transfers [4].

Fig 1.1. Memory Hierarchy [4]

Compute Unified Device Architecture or better known as
CUDA is a platform for developer to perform parallel
computing developed by NVIDIA on graphical processing
units (GPUs). CUDA enables computing to be speed up in a
dramatic manner leveraging the power of GPUs a machine
has. Developing in CUDA can be done in popular languages
such as C, C++, Python, etc [5]. Analyzing tool is also
provided using the CUDA Profiling Tools to investigate the
details of our program [6].

Here what we are going to analyze is the usage of parallel
programming using CUDA compared to the sequential
programming in performing Breadth-First Traversal. The BFS
algorithm will be done onn adjacency square matrix (N×N
matrices), which then the run time and memory consumption
will be recorded and compared. Both sequential and parallel
solutions will be developed in C programming language. The
machine used for running all the solutions is Lenovo Ideapad
Gaming Laptop 3, with the details as such: AMD Ryzen 5
4600H Processor @ 3.0GHz (12CPUs), 16384MB RAM, and
NVIDIA® GeForce® GTX 1650Ti Graphics (4 GB GDDR5
dedicated).

II. BREADTH-FIRST TRAVERSAL

We have done several methods on calculating and solving
the Breadth First Traversal to obtain algorithm with think suits
the best and fastest running time compared to the other. The
goal is to compute the Breadth-First Traversal, with N×N
adjacency matrix, and N is scaled as big as possible.

A. Sequential Algorithm

Breadth first search (BFS) is a general algorithm that is

often used to search for the shortest path in an unweighted

graph using a vertex-based technique. It is optimal for finding

the shortest path. This algorithm is present in real life settings

such as transportation, communication, information, and

social networks.

Given an undirected or directed bipartite graph G = (V,E),

where V stands for vertex or node and E stands for edge, and

a distinguished starting node s, BFS finds the smallest

number of edges to every node reachable from s. It visits

every node and edge of G to determine whether the graph is

connected. Nodes on the same level (siblings) are visited first

before moving onto the next (children) and nodes that have

been visited more than once will be deleted from the queue.

BFS begins at s and inspects every adjacent node the

starting node s in a left to right or top to bottom order. It will

do the same for every unvisited adjacent node and repeat the

same action until all the nodes are visited. Its time complexity

is O(V+E) when using an adjacency list and P(V2) when

using an adjacency matrix. The number of columns and rows

in the matrix depends on the number of nodes. As the size of

the matrices increase. The number of nodes and edges will

increase, and so does the time it takes for the BFS to traverse

through all the nodes following the time complexity formula

O(V+E).

Fig 2.1. Algorithm Illustration [7]

As we want to have the matrices as large as possible, it is
a problem when storing the numbers in an array. As an array
have certain limitation, it is not possible to use fixed multi-
dimensional array. So, in order to tackle this problem, we
proposed to use a dynamic multi-dimensional array as shown
below. The following function have been tested and able to
store up to N=8192.

int** create_matrix(int rows, int cols) {
 int** mat = new int* [rows];
 for (int i = 0; i < rows; ++i) {
 mat[i] = new int[cols]();
 }

 return mat;
}

After matrix is created, it will then be filled up on another

function with symmetrical binary values to represent the

vertices and edges. The following code shows code that uses

iterative method by implementing data structure queue with

supportive function enqueue and dequeue, we are holding the

value of current vertices stored in the queue array before

getting evaluated. We can see the illustration on Figure 2.1.

Result verification for large input data is done by tracing up

the vertices and edges printed until n = 64 for the number of

vertices.

 printf("%d ", i);
 visited[i] = 1;
 enqueue(&q, i); // Enqueue i for exploration
 while (!isEmpty(&q))
 {
 int node = dequeue(&q);
 for (int j = 0; j < 7; j++)
 {
 if(a[node][j] ==1 && visited[j] == 0){
 printf("%d ", j);
 visited[j] = 1;
 enqueue(&q, j);
 }
 }
 }

B. Parallel Algorithm

Identical to the Sequential Algorithm purpose and goal,
which is to perform Breadth First Traversal with matrix size
as large as possible. The code is modified from Harish &
Narayan [8]. The dataset for parallel algorithm is the same
unweighted and undirected graph generated for sequential
implementation. However, the data is converted into a
compact adjacency list to match the architecture of GPU
Thread Memory as proposed by Harish & Narayan. The
following code shows the implemented kernel:

__global__ void CUDA_BFS_KERNEL(Node *Va, int *Ea, bool *Fa, bool *Xa, int
*Ca,bool *done) // memory races on both Xa and Ca

{

 int id = threadIdx.x + blockIdx.x * blockDim.x;

 if (id > NUM_NODES) *done = false;

if (Fa[id] == true && Xa[id] == false) {

Fa[id] = false; Xa[id] = true;

 __syncthreads();

 printf("%d ", id); //Change CUDA settings for printf support

 int k = 0; int i;

 int start = Va[id].start;

 int end = start + Va[id].length;

 for (int i = start; i < end; i++)

 {

 int nid = Ea[i];

 if (Xa[nid] == false)

 {

 Ca[nid] = Ca[id] + 1;

 Fa[nid] = true;

 *done = false;

 }

 }

}

}

The printf in the above code is needed to print the vertices
that appear in the order of BFS. __syncthreads() call is needed
as well, since once an active node has been processed, the cost
associated with its neighbours need to be processed only after
the visited of all threads is updated accordingly. Hence
__synchthreads prevents racing between Xa and Ca.

Fig 2.2. Example Mapping Threads into Vertices [3]

In this version of implementation, we mapped 1 thread per
vertex, demonstrated in figure above, by using various block
size to test the capability of GPU to process each vertex. Thus,
this shows that there is potential to have 511 redundant threads
that are idle during kernel execution.

III. HYPOTHESIS

A. Grid and Block

Definitions of grid and block are interconnected one
another. Block is a programming abstraction that represents a
group of thread, which can be executed either in a serial or
parallel way. Grid have the same concept, but it is formed by
group of blocks which can be executed in just one kernel [4].

Besides, the following shows the results for the machine
deviceQuery which explain lot more information about our
GPU and its CUDA processing capability. At first, the
authors thought that the maximum capable thread to be used
in the parallel algorithm will be equal to 1024 according to
Maximum number of threads per block. Eventually, on reality
the capable thread being used is as on stated in the Warp Size
as the authors tried to put in the value accordingly to the given
code.

Fig 3.1. Device Query

B. Sample Program and Memory Allocation on GPU

The sample program we tried on is addition on grid and
block [9], the first thing that we create is a function that has
this ability.

__global__ void arradd(int* md, int* nd, int* pd) {
 int myid = blockIdx.x * blockDim.x + threadIdx.x;
 pd[myid] = md[myid] + nd[myid];
 printf("Block Number: %d Thread number : %d.\n",
blockIdx.x, threadIdx.x);
}

Afterwards, we can start to declare variables that we

needed to work with in the main function. Continue the

process with cudaMalloc that functions to allocate memory

to GPU. Together with using cudaMemcpy, we could copy

the data in array from CPU to the memory in GPU.

int size = MAXN * sizeof(int);
int m[MAXN], n[MAXN], p[MAXN], * md, * nd, * pd;
int i = 0;

for (i = 0; i < MAXN; i++) {
 m[i] = ;
}

cudaMalloc(&md, size);
cudaMemcpy(md, m, size, cudaMemcpyHostToDevice);

Next thing to work with is declaring grid and block
dimension, whereas in the code uses dim3 which is an integer
vector and uses Block and Thread. After creating grid and
block dimension we use arradd function, a kernel that has we
created before in CUDA. This function will add m and n then
put the results in array pd according to the size of grid and
block dimension declared. After finishing the process, we can
free the memory as we have done in parallel algorithm.

dim3 Block(4);
dim3 Thread(5);
arradd << < Block, Thread >> > (md, nd, pd);
cudaMemcpy(p, pd, size, cudaMemcpyDeviceToHost);

cudaFree(md);
cudaFree(nd);
cudaFree(pd);

for (int i = 0; i < 20; i++) {
 printf("\t%d", p[i]);
}

Here on the sample program, we learned that Block and
Thread affect the data being performed which is only equals
to Block x Thread, we think that if the resource is not
allocated then the process cannot be done. Besides, the
running Block is not may always be in order. For example,
Block 3 can run first than Block 0. While for the BFS
algorithm, the following code is used:

C. Execution Time and Memory Consumption Hypothesis

Several other case that we have tried to implement
sequential Breadth First Traversal on C, we think that it might
take a long time to execute even on small matrices. We
predict that the memory consumed is more or less the product
of N×N which one of the number will represent 4 bytes [10],
with the total memory consumption is N × N × 4 bytes. We
see that from the sequential algorithm the largest cost is on

the computation to fill up the resulting matrix, which is a
quadratic time of O(n2).

On parallel implementation, we think that it will always
be faster than the sequential algorithm as it leverages GPU
not just the CPU. Thread will also come to play a role in the
execution time of parallel programming, as every single
thread is mapped into a vertex and the sequential best case
running time of adjacency list implementation is O(V+E)
then the larger the thread, as long as it can map every single
vertex on the graph, it is expected to achieve constant running
time - O(1).Other than that, for parallel implementation
memory, we guess that it will just be more or less than two
times the memory needed for sequential one. The guess came
from that one is used in CPU while the other is consumed on
GPU.

IV. RESULT AND ANALYSIS

After the project was done completely, finally we can
evaluate the results of each algorithm on its run time and
memory consumption. The testing method is described in each
sub chapter correspondingly, as it uses different methodology
to run on sequential and parallel implementation.

Please be informed that all the calculations and results
provided may not be fully accurate as there may be technical
errors and many other things to consider going on in the
machine (e.g. running other programs together, plugged in to
electricity, etc.)

A. Sequential Implementation

To obtain the running time of sequential implementation
and to get the best and most accurate result, for each N×N
matrices it is being executed for 30 times. To do it
automatically, we put all the algorithm of Breadth-First
Traversal described before on chapter two to a function that
accepts two parameters, which is its row and column. The
function also contains the code below to record time.

Doing the execution on main and other function does not
give a significant run time difference on the Traversal. Thus,
after running the function 30 times using a for loop. The result
of average run time is shown below in a table. N.B. n/a means
that it is not available as the answer cannot be provided (equal
to 0).

TABLE I.
SEQUENTIAL RUN TIME

N Time in second

2, 4, 8, 16 n/a

32 1 x 10-4

64 9 x 10-4

128 6.999 x 10-3

256 5.723 x 10-2

512 5.400 x 10-1

1024 5.814 x 100

2048 7.108 x 101

4096 6.27 x 102

8192 4.520 x 103

On the other hand, the recording of memory consumption
used the default profiler given on Visual Studio 2019. The

number displayed on the table is the peak of the memory
consumption. While on the process it is have several steps
especially when filling up matrix a, b, and c which have
significant increases on memory consumption. The result is
recorded as below.

TABLE II.
SEQUENTIAL MEMORY CONSUMPTION

N Memory in MB

2, 4, 8, 16,

32, 64
n/a

128 1.4 x 100

256 2.2 x 100

512 4.8 x 100

1024 1.49 x 101

2048 5.59 x 101

4096 1.94 x 102

8192 7.725 x 102

On the table it is shown that from N=2 until N=64, the
memory being consumed is less than 1MB. We conclude that
way because it is that even when a 2x2 matrices, it only needs
roughly 16bytes (assume each int needs 4bytes). The result
cannot be provided as it requires a program to run for one
second or more to see diagnostic details on Visual Studio
2019.

B. Parallel Implementation

Corresponding to the sequential implementation, here we
will also discuss the result of run time of parallel algorithm
implementation on Breadth First Traversal. Unlike sequential
programming, we now need to determine the number of
threads to use for parallel programming. The following are the
tables of result of traversing N×N matrices using different
number of threads.

TABLE III.
THREADS EFFECT ON RUN TIME (IN SECOND)

Thread 1024 2048 4096 8192

2
2.48 x

100
9.59 x 100 6.37 x 101 4.92 x 102

4
1.78 x

100
4.02 x 100 1.93 x 101 1.34 x 102

8
1.64 x

100
2.64 x 100 7.99 x 100 4.30 x 101

16
1.55 x

100
2.45 x 100 7.95 x 100 4.25 x 101

32
1.49 x

100
2.56 x 100 7.83 x 100 4.25 x 101

Based on the table, the upfront prediction on hypothesis
holds as threads are affecting run time of a parallel
implementation. It is important to use optimal threads as it is
significant and can reduce time up to an average of 73.36%
(comparing the slowest and the fastest). We also found out that
the optimal thread on the machine and algorithm is 16 threads
on some cases. There is also a stagnant level around threads 8,
16, and 32 compared to using 2 or 4 threads with significant
differences. There are two columns to describe the run time in
parallel implementation. The “Time in second” column is the
product from Visual Studio 2019 profiler. While the
“NVProf” column comes from using CUDA Event API.
Where on the first few line we will create initializer for the
counter and start to record the time as well, as the code below
[11].

cudaEvent_t start, stop;
float milliseconds=0;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);
// Parallel Algorithm Here
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);

The results will be printed on the variable milliseconds, as
it is also recorded on milliseconds instead of second. The
results will be shown on the following table, where the
milliseconds have been converted to seconds. Where all the
time taken is using 32 threads on the execution.

TABLE IV.
PARALLEL RUN TIME

N Time in second
NVProf

in second

2, 4, 8, 16,

32, 64
n/a n/a

128 1.185 x 100 5 x 10-4

256 1.423 x 100 1.6 x 10-3

512 1.425 x 100 1.1 x 10-2

1024 1.487 x 100 8.25 x 10-2

2048 2.56 x 100 5.506 x 10-1

4096 7.831 x 100 3.950 x 100

8192 4.248 x 101 3.134 x 101

16384 2.943 x 102 2.537 x 102

It is obvious that the parallel algorithm runs faster for
Breadth First Traversal rather than the sequential one. The run
time can be easily noticeable especially on bigger N. When
N≤256, the CUDA role is not so significant compared to the
total time. On larger N, it is shown that CUDA plays a big role
as on N=16384 it consumes 85,99% of the total time. Rows
with smaller number of vertices are not compared due to the
assumptions that the computation on GPU will produce a
similar performance with CPU. This is because the data
movement from board memory to GPU memory most likely
will give overhead problem. On the other hand, larger N needs
more computational power, which parallel programming
provide through the usage of GPU. But there are some trade-
offs from the fast run time of parallel algorithm that is shown
below on the memory consumption.

TABLE V.
PARALLEL MEMORY CONSUMPTION

N Memory in MB

2, 4, 8, 16,
32, 64

n/a

128 7.338 x 101

256 2.776 x 101

512 3.902 x 101

1024 9.133 x 101

2048 2.095 x 102

4096 4.975 x 102

8192 1.6 x 103

16384 6.1 x 103

On the table it is shown that from N=2 until N=64, the
memory being consumed is not available using the default
profiler on Visual Studio 2019. As can be seen on N=128, it
consumes memory more than N=256 and N=512, of course it
is a weird phenomenon. There has been some spike data on
N=128 until N=512, which later on will be more stable on
N=1024 and so. The memory needed for such errors
sometimes give less than 10MB on an execution and
sometimes even more than 50MB on the other tries. It is
remained unknown what cause this to happen, we speculate
that it might be that there may be errors when placing or filling
the data.

C. Comparison and Analysis

This sub chapter will compare the results of both
sequential and parallel algorithm implementation by putting
the results side by side. First, it is obvious that the parallel
algorithm cost less time in the execution compared to the
sequential algorithm. We will perform calculation of the total
speedup using the following equation.

 𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠

𝑇𝑝
 (1)

The equation above is Amdahl’s Law [12]. Let 𝑇𝑠be the
computation time needed in sequential (without parallel
computation) and 𝑇𝑝 be the computation time needed in

parallel computation. The comparison and speedup
calculation are given in the table below.

TABLE VI.
RUN TIME COMPARISON AND SPEED UP

N
Sequential Run

in second

Parallel Run

in second

Total Speedup

in multiple

2, 4, 8, 16 n/a n/a n/a

32 1 x 10-4 n/a n/a

64 9 x 10-4 n/a n/a

128 6.999 x 10-3 1.185 x 100 0.006

256 5.723 x 10-2 1.423 x 100 0.040

512 5.400 x 10-1 1.425 x 100 0.379

1024 5.814 x 100 1.487 x 100 3.911

2048 7.108 x 101 2.56 x 100 27.764

4096 6.27 x 102 7.831 x 100 80.123

8192 4.520 x 103 4.248 x 101 106.403

Figure 4.1. Run Time Comparison

From the table and figure presented above, we can see that
by making a program parallel is very significant to its run time.
Even though, on N≤512 it takes longer time to finish

computation with parallel solution as the 𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 < 1.
We indicate that it may be because of overhead in parallelism
in the task (thread or process) start up and termination cost and
maybe combined with other problems [13][14]. So, our
hypothesis on the previous chapter is incorrect as we predict
that parallel will functions well and faster no matter the
matrices size is. But in average, the speedup done by making
a program parallel is 31.232 times faster. Thus, using parallel
implementation in solving problems is still recommended.

Besides comparing the run time, the memory consumption
is also clearly stated head-to-head in Table VII. In addition to
the memory consumption needed, a new column called
“Ratio” was added to show how many times more do the
parallel memory consumption needs compared to sequential
memory consumption.

 𝑅𝑎𝑡𝑖𝑜 =
𝑀𝐶𝑝

𝑀𝐶𝑠
 (2)

The equation above is made to easily identify the ratio of
memory consumed on each process. Where 𝑀𝐶𝑝 denotes the

memory consumption on a parallel computation. On the other
hand, 𝑀𝐶𝑠 denotes the memory consumption for a sequential
computation.

TABLE VII.
 MEMORY CONSUMPTION AND MULTIPLE

N
Sequential Run

in MB

Parallel Run

in MB
Ratio

2, 4, 8, 16,

32, 64
n/a n/a n/a

128 1.4 x 100 7.338 x 101 52.411

256 2.2 x 100 2.776 x 101 12.618

512 4.8 x 100 3.902 x 101 8.129

1024 1.49 x 101 9.133 x 101 6.130

2048 5.59 x 101 2.095 x 102 3.478

4096 1.94 x 102 4.975 x 102 2.562

8192 7.725 x 102 1.6 x 103 2.071

Fig 4.2. Memory Consumption Comparison

On the table and figure above, it is assumed for the
memory consumed on N≤64 is 0 as it is not available to do the
calculation. It is also shown on both on the table and figure
that the difference is quite much whether it is on the run time
or on the memory consumption. But vice versa to the run time,
memory consumption for parallel computation cost more than
sequential. The amount of memory required for parallel
computation can be greater than serial, due to the need of

replicating data and overheads associated with libraries used
and subsystems [14].

V. CONCLUSION

We present Breadth First Traversal on both sequential and
parallel model to see the differences. To conclude, it is
recommended to use parallel algorithm with optimal thread
numbers on bigger cases (breaking point should be found) as
it solves things faster with speedup on average of 31.23,
instead of the sequential. Some of the important notes to be
taken for parallel usage is that it needs more advanced
memory handling as the dataset is initially taken from a file,
created by CPU. Although running time in parallel
computation time would not be a problem, but memory of the
machine (CPU) would be the more complex part of solving
cases. On further research it should also be explored more
about giving constant value on cudaMemcpy and parallel
implementations for machine learning or deep learning as well
as it consumes lots of time and resources which parallel
programming can deal with [15].

There are also some errors that remained unsolved on the
project as the spike data and the data provided may not be
100% accurate. Some of the recommendations that we might
give is to use profiler other than default from Visual Studio
2019 as it may not be that accurate. The machine quality also
needs to be maintained (e.g. no running software when
executing code, plugged in electricity, heat sink quality, etc.).
Implementing Breadth First Traversal either on sequential and
parallel may use a better algorithm rather than the one that
provided.

REFERENCES

[1] “parallel-processing noun - Definition, pictures, pronunciation and

usage notes | Oxford Advanced Learner’s Dictionary at
OxfordLearnersDictionaries.com.” [Online]. Available:

https://www.oxfordlearnersdictionaries.com/definition/english/parall

el-processing. [Accessed: 05-Sep-2022].

[2] L. Woodard, “Introduction to Parallel Programming What is Parallel

Programming?,” 2013.

[3] Chetan Pise, Shailendra W. Shende, “NVIDIA Graphics Card for
Parallelization of BFS Graphs Algorithm using CUDA” Elsevier

Proceedings of 3rd International Conference on Recent Trends in

Engineering & Technology (ICRTET’2014), 2014.
[4] “Programming Guide :: CUDA Toolkit Documentation.” [Online].

Available: https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#scalable-programming-model. [Accessed: 13-Sep-
2022].

[5] “CUDA Zone | NVIDIA Developer.” [Online]. Available:

https://developer.nvidia.com/cuda-zone. [Accessed: 05-Sep-2022].
[6] “Profiler :: CUDA Toolkit Documentation.” [Online]. Available:

https://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[Accessed: 15-Sep-2022].
[7] Zulaikha Lateef, “All You Need To Know About The Breadth First

Search Algorithm” Available: https://www.edureka.co/blog/breadth-

first-search-algorithm/
[8] “Implementing Breadth First Search in CUDA” [Online]. Available:

https://siddharths2710.wordpress.com/2017/05/16/implementing-

breadth-first-search-in-cuda/ [Accessed: 08-Okt-2022].
[9] Aulia Hening Darmasti, “Cuda Programming Tutorial (Bahasa

Indonesia) - YouTube,” 21-Mar-2022. [Online]. Available:

https://www.youtube.com/watch?v=JjQwNlz_NTo. [Accessed: 13-
Sep-2022].

[10] “C++ Data Types - GeeksforGeeks.” [Online]. Available:

https://www.geeksforgeeks.org/c-data-types/. [Accessed: 13-Sep-
2022].

[11] “How to Implement Performance Metrics in CUDA C/C++ | NVIDIA
Developer Blog.” [Online]. Available:

https://devblogs.nvidia.com/how-implement-performance-metrics-

cuda-cc/. [Accessed: 11-Okt-2022].
[12] “Parallel Speedup — Parallel Computing Concepts.” [Online].

Available:
http://selkie.macalester.edu/csinparallel/modules/IntermediateIntrod

uction/build/html/ParallelSpeedup/ParallelSpeedup.html. [Accessed:

09-Sep-2022].
[13] “Overhead of Parallelism - Chanaka Balasooriya - Medium.”

[Online]. Available: https://medium.com/@chanakadkb/overhead-of-

parallelism-d1d3c43abadd. [Accessed: 16-Sep-2022].
[14] “Introduction to Parallel Computing.” [Online]. Available:

https://computing.llnl.gov/tutorials/parallel_comp/. [Accessed: 16-
Sep-2022].

[15] V. Hegde and S. Usmani, "Parallel and Distributed Deep Learning."

[Online]. Available:
https://web.stanford.edu/~rezab/classes/cme323/S16/projects_reports

/hedge_usmani.pdf. [Accessed: 01-Sep-2022]

