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Abstract—This paper aimed to implement both sequential 

and parallel implementations using CUDA on Breadth First 

Search (BFS) to see the differences and effects of it, followed by 

an analysis of the result. We used the algorithm as that will be 

elaborated more on the paper, here we would like to generally 

compare its memory consumption and run time. It is found out 

that parallel implementation runs faster on an average of 31.23 

times compared to sequential implementation running the same 

task. This is possible due to complete mapping on each column 

operations into thread memory on GPU, as it gives constant time 

complexity to each queue operation on its Traversal. Optimum 

threads to be used in parallel programming is also needed to be 

found, here we try to find it with trial-and-error testing. Further 

research would involve more complex parallel programming 

implementation and a more controlled testing environment. 

Keywords—Breadth First Search, Sequential, Parallel 

Computing, CUDA, NVIDIA 

I. INTRODUCTION 

Parallel processing is the division of process into different 
parts, which performed concurrently by different processors 
in a computer [1]. Parallel programming is a concept of using 
two or more processors to complete a task. Parallel 
programming comes with various benefits from solving larger 
problems, doing things faster in a more reasonable time, and 
more cases can be finished [2]. Set side by side with CPU, 
GPU is taking into consideration to work with parallel 
computations as it suits more. GPU nowadays have 
considerably developed from recent years not just for gaming 
as its early purpose, with the extend of General-purpose 
computations on GPUs (GPGPU), as one of them is NVIDIA 
CUDA [3]. 

In memory hierarchy, on parallel program execution the 
threads will access data from some memory spaces. Each 
thread will have both access to local and global memory. This 
will make memory consumption on parallel computing 
consumes more rather than serial, because there are a lot of 
bandwidth usage that happens upon memory transfers [4].  

 

Fig 1.1. Memory Hierarchy [4] 

Compute Unified Device Architecture or better known as 
CUDA is a platform for developer to perform parallel 
computing developed by NVIDIA on graphical processing 
units (GPUs). CUDA enables computing to be speed up in a 
dramatic manner leveraging the power of GPUs a machine 
has. Developing in CUDA can be done in popular languages 
such as C, C++, Python, etc [5]. Analyzing tool is also 
provided using the CUDA Profiling Tools to investigate the 
details of our program [6]. 

Here what we are going to analyze is the usage of parallel 
programming using CUDA compared to the sequential 
programming in performing Breadth-First Traversal. The BFS 
algorithm will be done onn adjacency square matrix (N×N 
matrices), which then the run time and memory consumption 
will be recorded and compared. Both sequential and parallel 
solutions will be developed in C programming language. The 
machine used for running all the solutions is Lenovo Ideapad 
Gaming Laptop 3, with the details as such: AMD Ryzen 5 
4600H Processor @ 3.0GHz (12CPUs), 16384MB RAM, and 
NVIDIA® GeForce® GTX 1650Ti Graphics (4 GB GDDR5 
dedicated). 



II. BREADTH-FIRST TRAVERSAL 

We have done several methods on calculating and solving 
the Breadth First Traversal to obtain algorithm with think suits 
the best and fastest running time compared to the other. The 
goal is to compute the Breadth-First Traversal, with N×N 
adjacency matrix, and N is scaled as big as possible. 

A. Sequential Algorithm 

Breadth first search (BFS) is a general algorithm that is 

often used to search for the shortest path in an unweighted 

graph using a vertex-based technique. It is optimal for finding 

the shortest path. This algorithm is present in real life settings 

such as transportation, communication, information, and 

social networks. 

Given an undirected or directed bipartite graph G = (V,E), 

where V stands for vertex or node and E stands for edge, and 

a distinguished starting node s, BFS finds the smallest 

number of edges to every node reachable from s. It visits 

every node and edge of G to determine whether the graph is 

connected. Nodes on the same level (siblings) are visited first 

before moving onto the next (children) and nodes that have 

been visited more than once will be deleted from the queue.  

BFS begins at s and inspects every adjacent node the 

starting node s in a left to right or top to bottom order. It will 

do the same for every unvisited adjacent node and repeat the 

same action until all the nodes are visited. Its time complexity 

is O(V+E) when using an adjacency list and P(V2) when 

using an adjacency matrix. The number of columns and rows 

in the matrix depends on the number of nodes. As the size of 

the matrices increase. The number of nodes and edges will 

increase, and so does the time it takes for the BFS to traverse 

through all the nodes following the time complexity formula 

O(V+E). 

 

 

 

 

 

 

 

Fig 2.1. Algorithm Illustration [7] 

As we want to have the matrices as large as possible, it is 
a problem when storing the numbers in an array. As an array 
have certain limitation, it is not possible to use fixed multi-
dimensional array. So, in order to tackle this problem, we 
proposed to use a dynamic multi-dimensional array as shown 
below. The following function have been tested and able to 
store up to N=8192. 

int** create_matrix(int rows, int cols) { 
 int** mat = new int* [rows]; 
 for (int i = 0; i < rows; ++i) { 
  mat[i] = new int[cols](); 
 } 
  
 return mat; 
} 

After matrix is created, it will then be filled up on another 

function with symmetrical binary values to represent the 

vertices and edges. The following code shows code that uses 

iterative method by implementing data structure queue with 

supportive function enqueue and dequeue, we are holding the 

value of current vertices stored in the queue array before 

getting evaluated. We can see the illustration on Figure 2.1. 

Result verification for large input data is done by tracing up 

the vertices and edges printed until n = 64 for the number of 

vertices. 
 

    printf("%d ", i); 
    visited[i] = 1; 
    enqueue(&q, i); // Enqueue i for exploration 
    while (!isEmpty(&q)) 
    { 
        int node = dequeue(&q); 
        for (int j = 0; j < 7; j++) 
        { 
            if(a[node][j] ==1 && visited[j] == 0){ 
                printf("%d ", j); 
                visited[j] = 1; 
                enqueue(&q, j); 
            } 
        } 
    } 

 

B. Parallel Algorithm 

Identical to the Sequential Algorithm purpose and goal, 
which is to perform Breadth First Traversal with matrix size 
as large as possible. The code is modified from Harish & 
Narayan [8]. The dataset for parallel algorithm is the same 
unweighted and undirected graph generated for sequential 
implementation. However, the data is converted into a 
compact adjacency list to match the architecture of GPU 
Thread Memory as proposed by Harish & Narayan. The 
following code shows the implemented kernel: 

__global__ void CUDA_BFS_KERNEL(Node *Va, int *Ea, bool *Fa, bool *Xa, int 
*Ca,bool *done) // memory races on both Xa and Ca 

{  

 int id = threadIdx.x + blockIdx.x * blockDim.x; 

 if (id > NUM_NODES) *done = false; 

if (Fa[id] == true && Xa[id] == false) { 

Fa[id] = false; Xa[id] = true; 

  __syncthreads();  

  printf("%d ", id); //Change CUDA settings for printf support 

  int k = 0; int i; 

  int start = Va[id].start; 

  int end = start + Va[id].length; 

  for (int i = start; i < end; i++)  

  { 

    int nid = Ea[i]; 

    if (Xa[nid] == false) 

    { 

      Ca[nid] = Ca[id] + 1; 

      Fa[nid] = true; 

      *done = false; 

    } 

  } 

} 

} 



The printf in the above code is needed to print the vertices 
that appear in the order of BFS. __syncthreads() call is needed 
as well, since once an active node has been processed, the cost 
associated with its neighbours need to be processed only after 
the visited of all threads is updated accordingly. Hence 
__synchthreads prevents racing between Xa and Ca. 

  

Fig 2.2. Example Mapping Threads into Vertices [3] 

In this version of implementation, we mapped 1 thread per 
vertex, demonstrated in figure above, by using various block 
size to test the capability of GPU to process each vertex. Thus, 
this shows that there is potential to have 511 redundant threads 
that are idle during kernel execution. 

 

III. HYPOTHESIS 

A. Grid and Block 

Definitions of grid and block are interconnected one 
another. Block is a programming abstraction that represents a 
group of thread, which can be executed either in a serial or 
parallel way. Grid have the same concept, but it is formed by 
group of blocks which can be executed in just one kernel [4]. 

Besides, the following shows the results for the machine 
deviceQuery which explain lot more information about our 
GPU and its CUDA processing capability. At first, the 
authors thought that the maximum capable thread to be used 
in the parallel algorithm will be equal to 1024 according to 
Maximum number of threads per block. Eventually, on reality 
the capable thread being used is as on stated in the Warp Size 
as the authors tried to put in the value accordingly to the given 
code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1. Device Query 

B. Sample Program and Memory Allocation on GPU 

The sample program we tried on is addition on grid and 
block [9], the first thing that we create is a function that has 
this ability. 

__global__ void arradd(int* md, int* nd, int* pd) { 
 int myid = blockIdx.x * blockDim.x + threadIdx.x; 
 pd[myid] = md[myid] + nd[myid]; 
 printf("Block Number: %d Thread number : %d.\n", 
blockIdx.x, threadIdx.x); 
} 

Afterwards, we can start to declare variables that we 

needed to work with in the main function. Continue the 

process with cudaMalloc that functions to allocate memory 

to GPU. Together with using cudaMemcpy, we could copy 

the data in array from CPU to the memory in GPU. 

int size = MAXN * sizeof(int); 
int m[MAXN], n[MAXN], p[MAXN], * md, * nd, * pd; 
int i = 0; 
 
for (i = 0; i < MAXN; i++) { 
 m[i] = ; 
} 

 
cudaMalloc(&md, size); 
cudaMemcpy(md, m, size, cudaMemcpyHostToDevice); 

Next thing to work with is declaring grid and block 
dimension, whereas in the code uses dim3 which is an integer 
vector and uses Block and Thread. After creating grid and 
block dimension we use arradd function, a kernel that has we 
created before in CUDA. This function will add m and n then 
put the results in array pd according to the size of grid and 
block dimension declared. After finishing the process, we can 
free the memory as we have done in parallel algorithm. 

dim3 Block(4); 
dim3 Thread(5); 
arradd << < Block, Thread >> > (md, nd, pd); 
cudaMemcpy(p, pd, size, cudaMemcpyDeviceToHost); 
 
cudaFree(md); 
cudaFree(nd); 
cudaFree(pd); 
 
for (int i = 0; i < 20; i++) { 
 printf("\t%d", p[i]); 
} 

Here on the sample program, we learned that Block and 
Thread affect the data being performed which is only equals 
to Block x Thread, we think that if the resource is not 
allocated then the process cannot be done. Besides, the 
running Block is not may always be in order. For example, 
Block 3 can run first than Block 0. While for the BFS 
algorithm, the following code is used: 

C. Execution Time and Memory Consumption Hypothesis 

Several other case that we have tried to implement 
sequential Breadth First Traversal on C, we think that it might 
take a long time to execute even on small matrices. We 
predict that the memory consumed is more or less the product 
of N×N which one of the number will represent 4 bytes [10], 
with the total memory consumption is N × N × 4 bytes. We 
see that from the sequential algorithm the largest cost is on 



the computation to fill up the resulting matrix, which is a 
quadratic time of O(n2).  

On parallel implementation, we think that it will always 
be faster than the sequential algorithm as it leverages GPU 
not just the CPU. Thread will also come to play a role in the 
execution time of parallel programming, as every single 
thread is mapped into a vertex and the sequential best case 
running time of adjacency list implementation is O(V+E) 
then the larger the thread, as long as it can map every single 
vertex on the graph, it is expected to achieve constant running 
time - O(1).Other than that, for parallel implementation 
memory, we guess that it will just be more or less than two 
times the memory needed for sequential one. The guess came 
from that one is used in CPU while the other is consumed on 
GPU. 

IV. RESULT AND ANALYSIS 

After the project was done completely, finally we can 
evaluate the results of each algorithm on its run time and 
memory consumption. The testing method is described in each 
sub chapter correspondingly, as it uses different methodology 
to run on sequential and parallel implementation. 

Please be informed that all the calculations and results 
provided may not be fully accurate as there may be technical 
errors and many other things to consider going on in the 
machine (e.g. running other programs together, plugged in to 
electricity, etc.) 

A. Sequential Implementation 

To obtain the running time of sequential implementation 
and to get the best and most accurate result, for each N×N 
matrices it is being executed for 30 times. To do it 
automatically, we put all the algorithm of Breadth-First 
Traversal described before on chapter two to a function that 
accepts two parameters, which is its row and column. The 
function also contains the code below to record time. 

Doing the execution on main and other function does not 
give a significant run time difference on the Traversal. Thus, 
after running the function 30 times using a for loop. The result 
of average run time is shown below in a table. N.B. n/a means 
that it is not available as the answer cannot be provided (equal 
to 0). 

TABLE I.   
SEQUENTIAL RUN TIME 

N Time in second 

2, 4, 8, 16 n/a 

32 1 x 10-4 

64 9 x 10-4 

128 6.999 x 10-3 

256 5.723 x 10-2 

512 5.400 x 10-1 

1024 5.814 x 100 

2048 7.108 x 101 

4096 6.27 x 102 

8192 4.520 x 103 

On the other hand, the recording of memory consumption 
used the default profiler given on Visual Studio 2019. The 

number displayed on the table is the peak of the memory 
consumption. While on the process it is have several steps 
especially when filling up matrix a, b, and c which have 
significant increases on memory consumption. The result is 
recorded as below. 

TABLE II.   
SEQUENTIAL MEMORY CONSUMPTION 

N Memory in MB 

2, 4, 8, 16, 

32, 64 
n/a 

128 1.4 x 100 

256 2.2 x 100 

512 4.8 x 100 

1024 1.49 x 101 

2048 5.59 x 101 

4096 1.94 x 102 

8192 7.725 x 102 

On the table it is shown that from N=2 until N=64, the 
memory being consumed is less than 1MB. We conclude that 
way because it is that even when a 2x2 matrices, it only needs 
roughly 16bytes (assume each int needs 4bytes). The result 
cannot be provided as it requires a program to run for one 
second or more to see diagnostic details on Visual Studio 
2019. 

B. Parallel Implementation 

Corresponding to the sequential implementation, here we 
will also discuss the result of run time of parallel algorithm 
implementation on Breadth First Traversal. Unlike sequential 
programming, we now need to determine the number of 
threads to use for parallel programming. The following are the 
tables of result of traversing N×N matrices using different 
number of threads.  

TABLE III.   
THREADS EFFECT ON RUN TIME (IN SECOND) 

Thread 1024 2048 4096 8192 

2 
2.48 x 

100 
9.59 x 100 6.37 x 101 4.92 x 102 

4 
1.78 x 

100 
4.02 x 100 1.93 x 101 1.34 x 102 

8 
1.64 x 

100 
2.64 x 100 7.99 x 100 4.30 x 101 

16 
1.55 x 

100 
2.45 x 100 7.95 x 100 4.25 x 101 

32 
1.49 x 

100 
2.56 x 100 7.83 x 100 4.25 x 101 

Based on the table, the upfront prediction on hypothesis 
holds as threads are affecting run time of a parallel 
implementation. It is important to use optimal threads as it is 
significant and can reduce time up to an average of 73.36% 
(comparing the slowest and the fastest). We also found out that 
the optimal thread on the machine and algorithm is 16 threads 
on some cases. There is also a stagnant level around threads 8, 
16, and 32 compared to using 2 or 4 threads with significant 
differences. There are two columns to describe the run time in 
parallel implementation. The “Time in second” column is the 
product from Visual Studio 2019 profiler. While the 
“NVProf” column comes from using CUDA Event API. 
Where on the first few line we will create initializer for the 
counter and start to record the time as well, as the code below 
[11]. 



cudaEvent_t start, stop; 
float milliseconds=0; 
cudaEventCreate(&start); 
cudaEventCreate(&stop); 
cudaEventRecord(start); 
// Parallel Algorithm Here 
cudaEventRecord(stop); 
cudaEventSynchronize(stop); 
cudaEventElapsedTime(&milliseconds, start, stop); 

The results will be printed on the variable milliseconds, as 
it is also recorded on milliseconds instead of second. The 
results will be shown on the following table, where the 
milliseconds have been converted to seconds. Where all the 
time taken is using 32 threads on the execution. 

TABLE IV.   
PARALLEL RUN TIME 

N Time in second 
NVProf 

in second 

2, 4, 8, 16, 

32, 64 
n/a n/a 

128 1.185 x 100 5 x 10-4 

256 1.423 x 100 1.6 x 10-3 

512 1.425 x 100 1.1 x 10-2 

1024 1.487 x 100 8.25 x 10-2 

2048 2.56 x 100 5.506 x 10-1 

4096 7.831 x 100 3.950 x 100 

8192 4.248 x 101 3.134 x 101 

16384 2.943 x 102 2.537 x 102 

It is obvious that the parallel algorithm runs faster for 
Breadth First Traversal rather than the sequential one. The run 
time can be easily noticeable especially on bigger N. When 
N≤256, the CUDA role is not so significant compared to the 
total time. On larger N, it is shown that CUDA plays a big role 
as on N=16384 it consumes 85,99% of the total time. Rows 
with smaller number of vertices are not compared due to the 
assumptions that the computation on GPU will produce a 
similar performance with CPU. This is because the data 
movement from board memory to GPU memory most likely 
will give overhead problem. On the other hand, larger N needs 
more computational power, which parallel programming 
provide through the usage of GPU. But there are some trade-
offs from the fast run time of parallel algorithm that is shown 
below on the memory consumption.  

TABLE V.   
PARALLEL MEMORY CONSUMPTION 

N Memory in MB 

2, 4, 8, 16, 
32, 64 

n/a 

128 7.338 x 101 

256 2.776 x 101 

512 3.902 x 101 

1024 9.133 x 101 

2048 2.095 x 102 

4096 4.975 x 102 

8192 1.6 x 103 

16384 6.1 x 103 

On the table it is shown that from N=2 until N=64, the 
memory being consumed is not available using the default 
profiler on Visual Studio 2019. As can be seen on N=128, it 
consumes memory more than N=256 and N=512, of course it 
is a weird phenomenon. There has been some spike data on 
N=128 until N=512, which later on will be more stable on 
N=1024 and so. The memory needed for such errors 
sometimes give less than 10MB on an execution and 
sometimes even more than 50MB on the other tries. It is 
remained unknown what cause this to happen, we speculate 
that it might be that there may be errors when placing or filling 
the data. 

C. Comparison and Analysis 

This sub chapter will compare the results of both 
sequential and parallel algorithm implementation by putting 
the results side by side. First, it is obvious that the parallel 
algorithm cost less time in the execution compared to the 
sequential algorithm. We will perform calculation of the total 
speedup using the following equation. 

 𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝑇𝑠

𝑇𝑝
 (1) 

The equation above is Amdahl’s Law [12]. Let 𝑇𝑠be the 
computation time needed in sequential (without parallel 
computation) and 𝑇𝑝 be the computation time needed in 

parallel computation. The comparison and speedup 
calculation are given in the table below.  

TABLE VI.   
RUN TIME COMPARISON AND SPEED UP 

N 
Sequential Run 

in second 

Parallel Run 

in second 

Total Speedup 

in multiple 

2, 4, 8, 16 n/a n/a n/a 

32 1 x 10-4 n/a n/a 

64 9 x 10-4 n/a n/a 

128 6.999 x 10-3 1.185 x 100 0.006 

256 5.723 x 10-2 1.423 x 100 0.040 

512 5.400 x 10-1 1.425 x 100 0.379 

1024 5.814 x 100 1.487 x 100 3.911 

2048 7.108 x 101 2.56 x 100 27.764 

4096 6.27 x 102 7.831 x 100 80.123 

8192 4.520 x 103 4.248 x 101 106.403 

 

Figure 4.1. Run Time Comparison 

From the table and figure presented above, we can see that 
by making a program parallel is very significant to its run time. 
Even though, on N≤512 it takes longer time to finish 



computation with parallel solution as the 𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 < 1. 
We indicate that it may be because of overhead in parallelism 
in the task (thread or process) start up and termination cost and 
maybe combined with other problems [13][14]. So, our 
hypothesis on the previous chapter is incorrect as we predict 
that parallel will functions well and faster no matter the 
matrices size is. But in average, the speedup done by making 
a program parallel is 31.232 times faster. Thus, using parallel 
implementation in solving problems is still recommended. 

Besides comparing the run time, the memory consumption 
is also clearly stated head-to-head in Table VII. In addition to 
the memory consumption needed, a new column called 
“Ratio” was added to show how many times more do the 
parallel memory consumption needs compared to sequential 
memory consumption.  

 𝑅𝑎𝑡𝑖𝑜 =  
𝑀𝐶𝑝

𝑀𝐶𝑠
 (2) 

The equation above is made to easily identify the ratio of 
memory consumed on each process. Where 𝑀𝐶𝑝 denotes the 

memory consumption on a parallel computation. On the other 
hand, 𝑀𝐶𝑠 denotes the memory consumption for a sequential 
computation. 

TABLE VII.   
 MEMORY CONSUMPTION AND MULTIPLE 

N 
Sequential Run 

in MB 

Parallel Run 

in MB 
Ratio 

2, 4, 8, 16, 

32, 64 
n/a n/a n/a 

128 1.4 x 100 7.338 x 101 52.411 

256 2.2 x 100 2.776 x 101 12.618 

512 4.8 x 100 3.902 x 101 8.129 

1024 1.49 x 101 9.133 x 101 6.130 

2048 5.59 x 101 2.095 x 102 3.478 

4096 1.94 x 102 4.975 x 102 2.562 

8192 7.725 x 102 1.6 x 103 2.071 

 

Fig 4.2. Memory Consumption Comparison 

On the table and figure above, it is assumed for the 
memory consumed on N≤64 is 0 as it is not available to do the 
calculation. It is also shown on both on the table and figure 
that the difference is quite much whether it is on the run time 
or on the memory consumption. But vice versa to the run time, 
memory consumption for parallel computation cost more than 
sequential. The amount of memory required for parallel 
computation can be greater than serial, due to the need of 

replicating data and overheads associated with libraries used 
and subsystems [14]. 

V. CONCLUSION 

We present Breadth First Traversal on both sequential and 
parallel model to see the differences. To conclude, it is 
recommended to use parallel algorithm with optimal thread 
numbers on bigger cases (breaking point should be found) as 
it solves things faster with speedup on average of 31.23, 
instead of the sequential. Some of the important notes to be 
taken for parallel usage is that it needs more advanced 
memory handling as the dataset is initially taken from a file, 
created by CPU. Although running time in parallel 
computation time would not be a problem, but memory of the 
machine (CPU) would be the more complex part of solving 
cases. On further research it should also be explored more 
about giving constant value on cudaMemcpy and parallel 
implementations for machine learning or deep learning as well 
as it consumes lots of time and resources which parallel 
programming can deal with [15]. 

There are also some errors that remained unsolved on the 
project as the spike data and the data provided may not be 
100% accurate. Some of the recommendations that we might 
give is to use profiler other than default from Visual Studio 
2019 as it may not be that accurate. The machine quality also 
needs to be maintained (e.g. no running software when 
executing code, plugged in electricity, heat sink quality, etc.). 
Implementing Breadth First Traversal either on sequential and 
parallel may use a better algorithm rather than the one that 
provided. 
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